A fast-convolution based space–time Chebyshev spectral method for peridynamic models
نویسندگان
چکیده
Abstract Peridynamics is a nonlocal generalization of continuum mechanics theory which addresses discontinuous problems without using partial derivatives and replacing them by an integral operator. As consequence, it finds applications in the framework development evolution fractures damages elastic materials. In this paper we consider one-dimensional nonlinear model peridynamics propose suitable two-dimensional fast-convolution spectral method based on Chebyshev polynomials to solve model. This choice allows us gain same accuracy both space time. We show convergence perform several simulations study performance scheme.
منابع مشابه
A spectral method based on the second kind Chebyshev polynomials for solving a class of fractional optimal control problems
In this paper, we consider the second-kind Chebyshev polynomials (SKCPs) for the numerical solution of the fractional optimal control problems (FOCPs). Firstly, an introduction of the fractional calculus and properties of the shifted SKCPs are given and then operational matrix of fractional integration is introduced. Next, these properties are used together with the Legendre-Gauss quadrature fo...
متن کاملA FAST GA-BASED METHOD FOR SOLVING TRUSS OPTIMIZATION PROBLEMS
Due to the complex structural issues and increasing number of design variables, a rather fast optimization algorithm to lead to a global swift convergence history without multiple attempts may be of major concern. Genetic Algorithm (GA) includes random numerical technique that is inspired by nature and is used to solve optimization problems. In this study, a novel GA method based on self-a...
متن کاملSuperconvergence of a Chebyshev Spectral Collocation Method
We reveal the relationship between a Petrov–Galerkin method and a spectral collocation method at the Chebyshev points of the second kind (±1 and zeros of Uk) for the two-point boundary value problem. Derivative superconvergence points are identified as the Chebyshev points of the first kind (Zeros of Tk). Super-geometric convergent rate is established for a special class of solutions.
متن کاملA Fast Immersed Boundary Fourier Pseudo-spectral Method for Simulation of the Incompressible Flows
Abstract The present paper is devoted to implementation of the immersed boundary technique into the Fourier pseudo-spectral solution of the vorticity-velocity formulation of the two-dimensional incompressible Navier-Stokes equations. The immersed boundary conditions are implemented via direct modification of the convection and diffusion terms, and therefore, in contrast to some other similar ...
متن کاملa spectral method based on the second kind chebyshev polynomials for solving a class of fractional optimal control problems
in this paper, we consider the second-kind chebyshev polynomials (skcps) for the numerical solution of the fractional optimal control problems (focps). firstly, an introduction of the fractional calculus and properties of the shifted skcps are given and then operational matrix of fractional integration is introduced. next, these properties are used together with the legendre-gauss quadrature fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Continuous and Discrete Models
سال: 2022
ISSN: ['2731-4235']
DOI: https://doi.org/10.1186/s13662-022-03738-0